
Java Coding 6
Collections

Arrays of Objects

Arrays of objects

• Array contains only references to objects

Track[] tracks;

tracks = new Track[5];

tracks[0] = new Track(“David”, 100);

tracks[1] = new Track(“Gunes”, 200);

 Still need to create actual objects

1 2 3 40

tracks

David
100

Gunes
200

tracks[0].getTitle()

tracks[4].getTitle()

Make Parallel Arrays into Arrays of Objects

 Don't do this
int[] accountNumbers;

double[] balances;

 Don't use parallel arrays

Figure 4

Make Parallel Arrays into Arrays of Objects

Avoid parallel arrays by changing them into arrays of objects:

BankAccount[] accounts;

Figure 5

ArraysofObjects - Example

Date class

Properties: day, month, year

Constructors: copy constructor and others

Methods: get methods, clone, equals, compareTo, toString

Main method

Create an array to keep date objects

Ask the user to enter date objects until a sentinel value

Print the contents of the array

Hints: Make sure array has space

Keep the number of objects in the array, etc.

Inner class Example - MusicCD Class

MusicCD(title, artist, tracks)

String getTitle()

String getArtist()

Track getTrack(int)

int getDuration()

Date getReleaseDate()

String title

String Artist

Date releaseDate

??? tracks

Date(String)

String toString()

int year

int month

int day

Track(title, length)

String getTitle()

int getLength()

String title

int length

collection of

Copyright © 2014 by John Wiley & Sons. All rights reserved. 8

Array Lists

 An array list stores a sequence of values whose size can

change.

 An array list can grow and shrink as needed.

 ArrayList class supplies methods for many common

tasks, such as inserting and removing elements.

 An array list expands to hold as many elements as

needed.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 10

Syntax 6.4 Array Lists

Copyright © 2014 by John Wiley & Sons. All rights reserved. 11

Declaring and Using Array Lists

 To declare an array list of strings

ArrayList<String> names = new ArrayList<String>();

 To use an array list

import java.util.ArrayList;

 ArrayList is a generic class

 Angle brackets denote a type parameter

• Replace String with any other class to get a different array list

type

Copyright © 2014 by John Wiley & Sons. All rights reserved. 12

Declaring and Using Array Lists

 ArrayList<String> is first constructed, it has size 0

 Use the add method to add an object to the end of the array list:

names.add("Emily"); // Now names has size 1 and element "Emily”

names.add("Bob"); // Now names has size 2 and elements "Emily", "Bob”

names.add("Cindy"); // names has size 3 and elements "Emily", "Bob",

// and "Cindy”

 The size method gives the current size of the array list.

• Size is now 3

Figure 17 Adding an Array List Element with add

Copyright © 2014 by John Wiley & Sons. All rights reserved. 13

Declaring and Using Array Lists

 To obtain an array list element, use the get method

• Index starts at 0

 To retrieve the name with index 2:

String name = names.get(2); // Gets the third element

// of the array list

 The last valid index is names.size() - 1

• A common bounds error:

int i = names.size();

name = names.get(i); // Error

 To set an array list element to a new value, use the set

method:

names.set(2, "Carolyn");

Copyright © 2014 by John Wiley & Sons. All rights reserved. 14

Declaring and Using Array Lists

 An array list has methods for adding and removing

elements in the middle.

 This statement adds a new element at position 1 and

moves all elements with index 1 or larger by one

position.

names.add(1, "Ann");

Copyright © 2014 by John Wiley & Sons. All rights reserved. 15

Declaring and Using Array Lists

 The remove method,

• removes the element at a given position

• moves all elements after the removed element down by one

position

• and reduces the size of the array list by 1.

names.remove(1);

 To print an array list:

System.out.println(names);

// Prints [Emily, Bob, Carolyn]

Copyright © 2014 by John Wiley & Sons. All rights reserved. 16

Declaring and Using Array Lists

Figure 18 Adding and Removing Elements in the Middle of

an Array List

Copyright © 2014 by John Wiley & Sons. All rights reserved. 17

Using the Enhanced for Loop with

Array Lists

 You can use the enhanced for loop to visit all the

elements of an array list

ArrayList<String> names = . . . ;

for (String name : names)

{

System.out.println(name);

}

 This is equivalent to:

for (int i = 0; i < names.size(); i++)

{

String name = names.get(i);

System.out.println(name);

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 18

Copying Array Lists

 Copying an array list reference yields two references to

the same array list.

 After the code below is executed

• Both names and friends reference the same array list to which

the string "Harry" was added.

ArrayList<String> friends = names;

friends.add("Harry");

Figure 19 Copying an Array List Reference

Copyright © 2014 by John Wiley & Sons. All rights reserved. 19

Copying Array Lists

 To make a copy of an array list:

 construct the copy and pass the original list into the

constructor:

ArrayList<String> newNames =

new ArrayList<String>(names);

Copyright © 2014 by John Wiley & Sons. All rights reserved. 20

Working With Array Lists

Copyright © 2014 by John Wiley & Sons. All rights reserved. 21

Wrapper Classes

 You cannot directly insert primitive type values into

array lists.

 Like truffles that must be in a wrapper to be sold, a

number must be placed in a wrapper to be stored in an

array list.

 Use the matching wrapper class.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 22

Wrapper Classes

 To collect double values in an array list, you use an

ArrayList<Double>.

 If you assign a double value to a Double variable, the

number is automatically “put into a box”

 Called auto-boxing:

• Automatic conversion between primitive types and the

corresponding wrapper classes:

Double wrapper = 29.95;

• Wrapper values are automatically “unboxed” to primitive types

double x = wrapper;

Figure 20 A Wrapper Class Variable

Copyright © 2014 by John Wiley & Sons. All rights reserved. 23

Self Check 6.35

Answer:

ArrayList<Integer> primes =

new ArrayList<Integer>();

primes.add(2);

primes.add(3);

primes.add(5);

primes.add(7);

primes.add(11);

Declare an array list primes of integers that contains the

first five prime numbers (2, 3, 5, 7, and 11).

Copyright © 2014 by John Wiley & Sons. All rights reserved. 24

Self Check 6.36

Answer:

for (int i = primes.size() - 1; i >= 0; i--)

{

System.out.println(primes.get(i));

}

Given the array list primes declared in Self Check 35, write

a loop to print its elements in reverse order, starting with

the last element.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 25

Self Check 6.37

Answer: "Ann", "Cal"

What does the array list names contain after the following

statements?

ArrayList<String> names = new ArrayList<String>;

names.add("Bob");

names.add(0, "Ann");

names.remove(1);

names.add("Cal");

Copyright © 2014 by John Wiley & Sons. All rights reserved. 26

Self Check 6.39

Consider this method that appends the elements of one array list

to another:

public void append(ArrayList<String> target,

ArrayList<String> source)

{

for (int i = 0; i < source.size(); i++)

{

target.add(source.get(i));

}

}

What are the contents of names1 and names2 after these

statements?

ArrayList<String> names1 = new ArrayList<String>();

names1.add("Emily");

names1.add("Bob");

names1.add("Cindy");

ArrayList<String> names2 = new ArrayList<String>();

names2.add("Dave");

append(names1, names2);

Continu
ed

Copyright © 2014 by John Wiley & Sons. All rights reserved. 27

Self Check 6.39

Answer: names1 contains "Emily", "Bob", "Cindy",

"Dave"; names2 contains "Dave"

ArrayListPlay - Play with collections of Date
objects

indexOf and contains

• public int indexOf(Object o)

• Returns the index of the first occurrence of the specified element in
this list, or -1 if this list does not contain the element

• More formally, returns the lowest index i such that (o==null ?
get(i)==null : o.equals(get(i))), or -1 if there is no such index

• public Boolean contains(Object o)

• Returns true if this list contains the specified element

• More formally, returns true if and only if this list contains at least one
element e such that (o==null ? e==null : o.equals(e)).

Easy Problem

• Read in a set of positive integer values and then print out a table
showing the average, each of the values and their difference from
the average.

Average is 5

Value Diff

10 5

3 -2

6 1

1 -4

Example output…

Umm… must remember
all the values we read in

in order to print the
table.

Could use ArrayList… BUT
integers are not Objects!

(use Integer wrapper class)

Easy Problem

• Algorithm

1. read set of values (how? Fixed number, e.g. 4, ask
user how many?, use sentinel?)

2. compute average of set of values (divide by zero
error?)

3. print table using average & set of values

• Cannot directly store primitive types in ArrayList

+ solution create own wrapper class, MyInt

+ use Java’s wrapper classes Integer, Double, etc.

+ utilise autoboxing/unboxing.

• Java’s wrapper classes have other useful methods, e.g.
valueOf to convert string to int or double.

Example

• Write a program that

• Reads a sequence of values and

• Prints them, marking the largest value

Copyright © 2014 by John Wiley & Sons. All rights reserved. 33

section_7/LargestInArrayList.java

1 import java.util.ArrayList;

2 import java.util.Scanner;

3

4 /**

5 This program reads a sequence of values and prints them, marking the largest value.

6 */

7 public class LargestInArrayList

8 {

9 public static void main(String[] args)

10 {

11 ArrayList<Double> values = new ArrayList<Double>();

12

13 // Read inputs

14

15 System.out.println("Please enter values, Q to quit:");

16 Scanner in = new Scanner(System.in);

17 while (in.hasNextDouble())

18 {

19 values.add(in.nextDouble());

20 }

21

Continued

code/section_7/LargestInArrayList.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 34

section_7/LargestInArrayList.java

22 // Find the largest value

23

24 double largest = values.get(0);

25 for (int i = 1; i < values.size(); i++)

26 {

27 if (values.get(i) > largest)

28 {

29 largest = values.get(i);

30 }

31 }

32

33 // Print all values, marking the largest

34

35 for (double element : values)

36 {

37 System.out.print(element);

38 if (element == largest)

39 {

40 System.out.print(" <== largest value");

41 }

42 System.out.println();

43 }

44 }

45 }

Continued

code/section_7/LargestInArrayList.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 35

section_7/LargestInArrayList.java

Program Run

Please enter values, Q to quit:

35 80 115 44.5 Q

35

80

115 <== largest value

44.5

code/section_7/LargestInArrayList.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 36

Using Array Algorithms with Array

Lists

 The array algorithms can be converted to array lists

simply by using the array list methods instead of the

array syntax.

 Code to find the largest element in an array:

double largest = values[0];

for (int i = 1; i < values.length; i++)

{

if (values[i] > largest) { largest = values[i]; }

}

 Code to find the largest element in an array list:

double largest = values.get(0);

for (int i = 1; i < values.size(); i++)

{

if (values.get(i) > largest) { largest = values.get(i); }

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 37

Storing Input Values in an Array List

 To collect an unknown number of inputs, array lists are

much easier to use than arrays.

 Simply read the inputs and add them to an array list:

ArrayList<Double> inputs = new ArrayList<Double>();

while (in.hasNextDouble())

{

inputs.add(in.nextDouble());

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 38

Removing Matches

 To remove elements from an array list, call the remove

method.

ArrayList<String> words = ...;

for (int i = 0; i < words.size(); i++)

{

String word = words.get(i);

if (word.length() < 4)

{

Remove the element at index i.

}

}

Error: skips the element after the moved element

Copyright © 2014 by John Wiley & Sons. All rights reserved. 39

Removing Matches

 Should not increment i when an element is removed

 Pseudocode

If the element at index i matches the condition

Remove the element.

Else

Increment i.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 40

Removing Matches

 Use a while loop, not a for loop

int i = 0;

while (i < words.size())

{

String word = words.get(i);

if (word.length() < 4) { words.remove(i); }

else { i++; }

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 41

Choosing Between Array Lists and Arrays

 For most programming tasks, array lists are easier to use

than arrays

• Array lists can grow and shrink.

• Arrays have a nicer syntax.

 Recommendations

• If the size of a collection never changes, use an array.

• If you collect a long sequence of primitive type values and you are

concerned about efficiency, use an array.

• Otherwise, use an array list.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 42

Choosing Between Array Lists and Arrays

